1,085 research outputs found

    Probing BEC phase fluctuations with atomic quantum dots

    Full text link
    We consider the dephasing of two internal states |0> and |1> of a trapped impurity atom, a so-called atomic quantum dot (AQD), where only state |1> couples to a Bose-Einstein condensate (BEC). A direct relation between the dephasing of the internal states of the AQD and the temporal phase fluctuations of the BEC is established. Based on this relation we suggest a scheme to probe BEC phase fluctuations nondestructively via dephasing measurements of the AQD. In particular, the scheme allows to trace the dependence of the phase fluctuations on the trapping geometry of the BEC.Comment: 11 pages, 3 figure

    Out-of-equilibrium Correlated Systems : Bipartite Entanglement as a Probe of Thermalization

    Full text link
    Thermalization play a central role in out-of-equilibrium physics of ultracold atoms or electronic transport phenomena. On the other hand, entanglement concepts have proven to be extremely useful to investigate quantum phases of matter. Here, it is argued that **bipartite** entanglement measures provide key information on out-of-equilibrium states and might therefore offer stringent thermalization criteria. This is illustrated by considering a global quench in an (extended) XXZ spin-1/2 chain across its (zero-temperature) quantum critical point. A non-local **bipartition** of the chain **preserving translation symmetry** is proposed. The time-evolution after the quench of the **reduced** density matrix of the half-system is computed and its associated (time-dependent) entanglement spectrum is analyzed. Generically, the corresponding entanglement entropy quickly reaches a "plateau" after a short transient regime. However, in the case of the integrable XXZ chain, the low-energy entanglement spectrum still reveals strong time-fluctuations. In addition, its infinite-time average shows strong deviations from the spectrum of a Boltzmann thermal density matrix. In contrast, when the integrability of the model is broken (by small next-nearest neighbor couplings), the entanglement spectra of the time-average and thermal density matrices become remarkably similar.Comment: extended version: 15 pages, 9 figure

    High field fractional quantum Hall effect in optical lattices

    Full text link
    We consider interacting bosonic atoms in an optical lattice subject to a large simulated magnetic field. We develop a model similar to a bilayer fractional quantum Hall system valid near simple rational numbers of magnetic flux quanta per lattice cell. Then we calculate its ground state, magnetic lengths, fractional fillings, and find unexpected sign changes in the Hall current. Finally we study methods for detecting these novel features via shot noise and Hall current measurements.Comment: 4 pages, 4 figures, accepted by PR

    Multipartite entanglement detection in bosons

    Full text link
    We propose a simple quantum network to detect multipartite entangled states of bosons, and show how to implement this network for neutral atoms stored in an optical lattice. We investigate the special properties of cluster states, multipartite entangled states and superpositions of distinct macroscopic quantum states that can be identified by the network.Comment: 4 pages, 2 figure

    Signatures of the superfluid to Mott-insulator transition in the excitation spectrum of ultracold atoms

    Full text link
    We present a detailed analysis of the dynamical response of ultra-cold bosonic atoms in a one-dimensional optical lattice subjected to a periodic modulation of the lattice depth. Following the experimental realization by Stoferle et al [Phys. Rev. Lett. 92, 130403 (2004)] we study the excitation spectrum of the system as revealed by the response of the total energy as a function of the modulation frequency Omega. By using the Time Evolving Block Decimation algorithm, we are able to simulate one-dimensional systems comparable in size to those in the experiment, with harmonic trapping and across many lattice depths ranging from the Mott-insulator to the superfluid regime. Our results produce many of the features seen in the experiment, namely a broad response in the superfluid regime, and narrow discrete resonances in the Mott-insulator regime. We identify several signatures of the superfluid-Mott insulator transition that are manifested in the spectrum as it evolves from one limit to the other.Comment: 18 pages and 12 figures; Some improved results and additional references. To appear in a special issue of New J. Phy

    The Optical Excitation of Zigzag Carbon Nanotubes with Photons Guided in Nanofibers

    Full text link
    We consider the excitation of electrons in semiconducting carbon nanotubes by photons from the evanescent field created by a subwavelength-diameter optical fiber. The strongly changing evanescent field of such nanofibers requires dropping the dipole approximation. We show that this leads to novel effects, especially a high dependence of the photon absorption on the relative orientation and geometry of the nanotube-nanofiber setup in the optical and near infrared domain. In particular, we calculate photon absorption probabilities for a straight nanotube and nanofiber depending on their relative angle. Nanotubes orthogonal to the fiber are found to perform much better than parallel nanotubes when they are short. As the nanotube gets longer the absorption of parallel nanotubes is found to exceed the orthogonal nanotubes and approach 100% for extremely long nanotubes. In addition, we show that if the nanotube is wrapped around the fiber in an appropriate way the absorption is enhanced. We find that optical and near infrared photons could be converted to excitations with efficiencies that may exceed 90%. This may provide opportunities for future photodetectors and we discuss possible setups.Comment: 14 pages, 14 figure

    Singlet Generation in Mixed State Quantum Networks

    Full text link
    We study the generation of singlets in quantum networks with nodes initially sharing a finite number of partially entangled bipartite mixed states. We prove that singlets between arbitrary nodes in such networks can be created if and only if the initial states connecting the nodes have a particular form. We then generalize the method of entanglement percolation, previously developed for pure states, to mixed states of this form. As part of this, we find and compare different distillation protocols necessary to convert groups of mixed states shared between neighboring nodes of the network into singlets. In addition, we discuss protocols that only rely on local rules for the efficient connection of two remote nodes in the network via entanglement swapping. Further improvements of the success probability of singlet generation are developed by using particular forms of `quantum preprocessing' on the network. This includes generalized forms of entanglement swapping and we show how such strategies can be embedded in regular and hierarchical quantum networks.Comment: 17 pages, 21 figure

    Long Distance Entanglement Generation in 2D Networks

    Full text link
    We consider 2D networks composed of nodes initially linked by two-qubit mixed states. In these networks we develop a global error correction scheme that can generate distance-independent entanglement from arbitrary network geometries using rank two states. By using this method and combining it with the concept of percolation we also show that the generation of long distance entanglement is possible with rank three states. Entanglement percolation and global error correction have different advantages depending on the given situation. To reveal the trade-off between them we consider their application on networks containing pure states. In doing so we find a range of pure-state schemes, each of which has applications in particular circumstances: For instance, we can identify a protocol for creating perfect entanglement between two distant nodes. However, this protocol can not generate a singlet between any two nodes. On the other hand, we can also construct schemes for creating entanglement between any nodes, but the corresponding entanglement fidelity is lower.Comment: 10 pages, 9 figures, 1 tabl

    Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms

    Full text link
    We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area and we thus simulate a magnetic flux through the lattice. This setup is described by a Hamiltonian identical to the one for electrons on a lattice subject to a magnetic field and thus allows us to study this equivalent situation under very well defined controllable conditions. We consider the limiting case of huge magnetic fields -- which is not experimentally accessible for electrons in metals -- where a fractal band structure, the Hofstadter butterfly, characterizes the system.Comment: 6 pages, RevTe

    Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices

    Full text link
    We investigate how to create entangled states of ultracold atoms trapped in optical lattices by dynamically manipulating the shape of the lattice potential. We consider an additional potential (the superlattice) that allows both the splitting of each site into a double well potential, and the control of the height of potential barrier between sites. We use superlattice manipulations to perform entangling operations between neighbouring qubits encoded on the Zeeman levels of the atoms without having to perform transfers between the different vibrational states of the atoms. We show how to use superlattices to engineer many-body entangled states resilient to collective dephasing noise. Also, we present a method to realize a 2D resource for measurement-based quantum computing via Bell-pair measurements. We analyze measurement networks that allow the execution of quantum algorithms while maintaining the resilience properties of the system throughout the computation.Comment: 23 pages, 6 figures, IOP style, published in New Journal of Physics. Minor corrections/few typos remove
    corecore